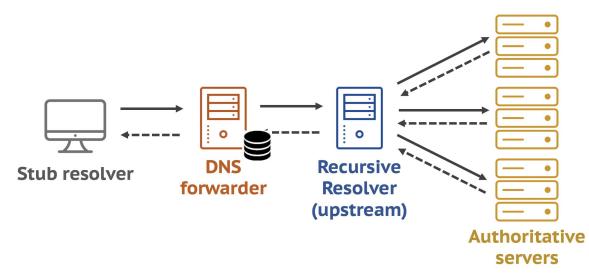
Poison Over Troubled Forwarders: A Cache Poisoning Attack Targeting DNS Forwarding Devices

<u>Xiaofeng Zheng</u>, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou, Baojun Liu, Keyu Man, Shuang Hao, Haixin Duan and Zhiyun Qian

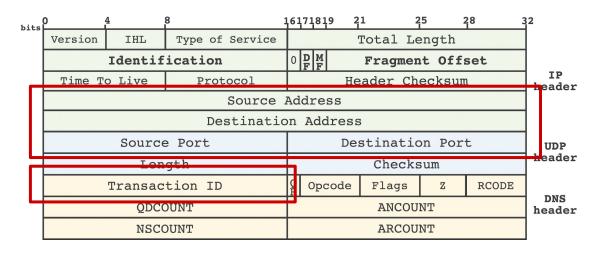

DNS Forwarder

• Devices standing in between stub and recursive resolvers

E.g., home routers, open Wi-Fi networks

Can have caching abilities

Relies on the integrity of upstream resolvers



DNS Cache Poisoning Attacks

• Forging attacks targeting recursive resolvers

Craft a DNS answer which matches the query's metadata Example: Kaminsky Attack (2008)

Mitigation: increase randomness of DNS packet

RFC 5452:

DNS resolver implementations should use **randomized** ephemeral port numbers and DNS transaction IDs

Threat Model: Overview

 Defragmentation attacks targeting DNS forwarders Reliably forces DNS response fragmentation Targets arbitrary victim domain names

Threat Model: Overview

Defragmentation attacks targeting DNS forwarders
 Reliably forces DNS response fragmentation
 Targets arbitrary victim domain names

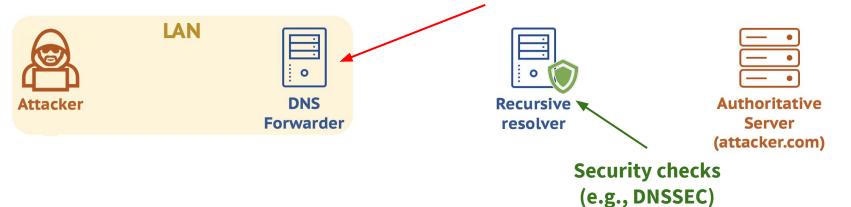
1. Attacker & DNS forwarder locate in the same LAN (e.g., in open Wi-Fi networks)

	N		
		×.	

DNS Forwarder

LL	_	•	
I E		•	
ΙГ		•	
	0		

Recursive resolver


Authoritative Server (attacker.com)

Insight on Forwarder Roles

- Defragmentation attacks targeting DNS forwarders
 Reliably forces DNS response fragmentation
 Targets arbitrary victim domain names
 - 1. Attacker & DNS forwarder locate in the same LAN (e.g., in open Wi-Fi networks)

Relies on recursive resolvers Target of cache poisoning

2. Use attacker's own domain name and authoritative server

Attacker's Oversized DNS Response

• CNAME chain

Use dummy **CNAME records** to enlarge attacker's DNS response

1st fragment

a.attacker.com CNAME b.attacker.com

b.attacker.com CNAME c.attacker.com

c.attacker.com CNAME d.attacker.com

x.attacker.com CNAME y.attacker.com

y.attacker.com CNAME z.attacker.com

z.attacker.com A x.x.x.x

> 1,500 Bytes (Ethernet MTU)
Always produce fragments

2nd fragment

Attacker's Oversized DNS Response

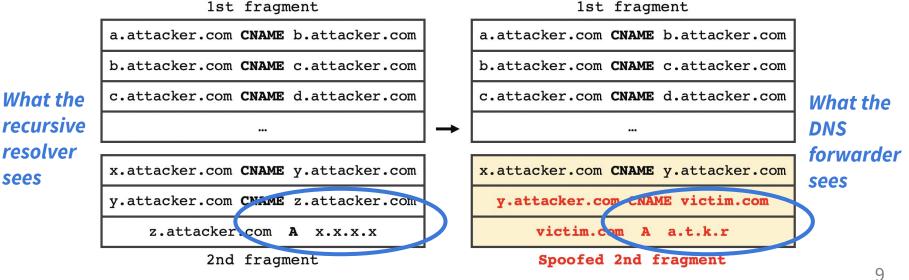
CNAME chain

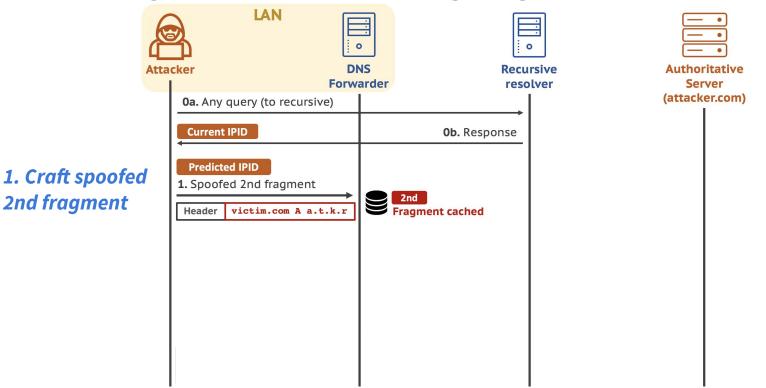
Use dummy **CNAME records** to enlarge attacker's DNS response Use CNAME to point attacker's domain to any victim

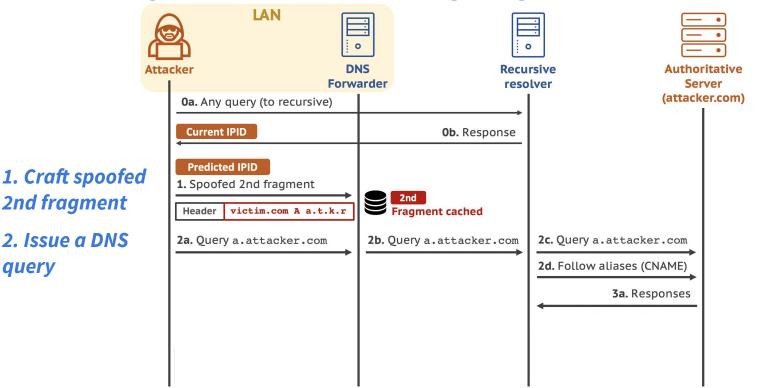
	lst iragment	lst iragment	
	a.attacker.com CNAME b.attacker.com	a.attacker.com CNAME b.attacker.com	
	b.attacker.com CNAME c.attacker.com	b.attacker.com CNAME c.attacker.com	
What the	c.attacker.com CNAME d.attacker.com	c.attacker.com CNAME d.attacker.com	What the
recursive		 	DNS
resolver			forwarder
sees	x.attacker.com CNAME y.attacker.com	x.attacker.com CNAME y.attacker.com	sees
	y.attacker.com CNAME z.attacker.com	y.attacker.com CNAME victim.com	
	z.attacker.com A x.x.x.x	victim.com A a.t.k.r	

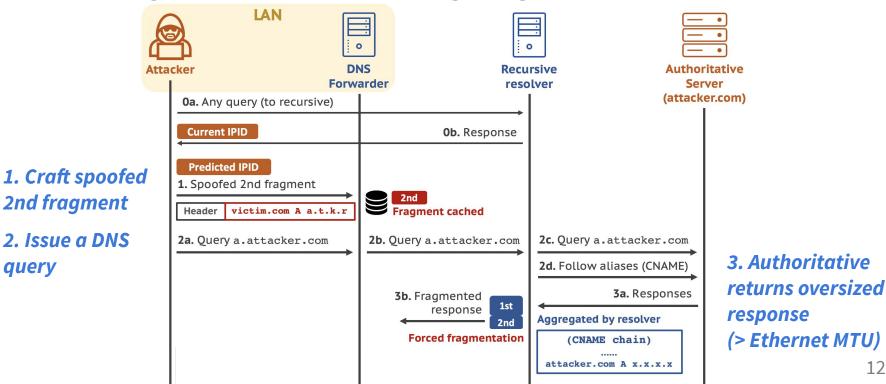
1 at fragmant

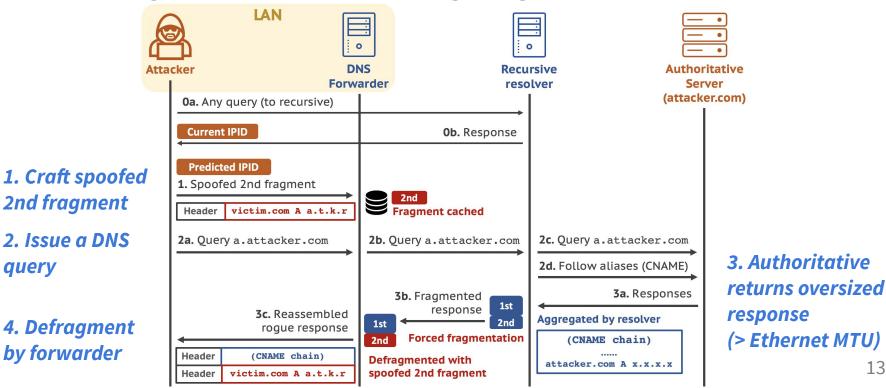
1at fragmant

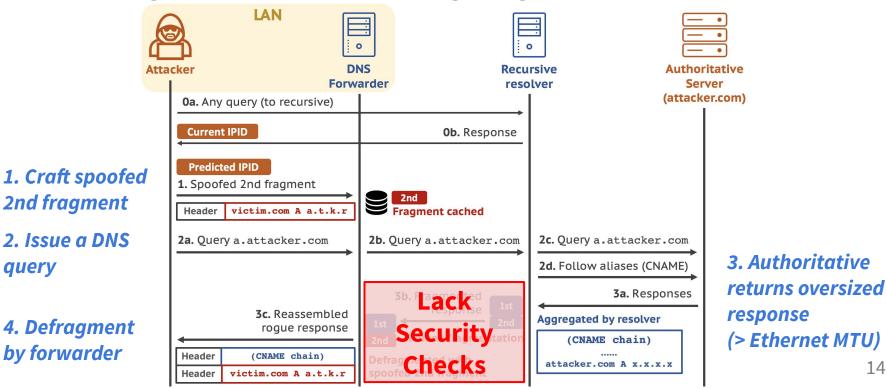

2nd fragment


Spoofed 2nd fragment


Attacker's Oversized DNS Response


CNAME chain


Use dummy **CNAME records** to enlarge attacker's DNS response Use CNAME to **point attacker's domain to any victim**



Conditions of Successful Attacks

• DNS caching by record

The tampered record can be cached separately

• EDNS(0) support

Allows transfer of DNS messages larger than 512 Bytes

• No active truncation of DNS response

Ensures that the entire oversized response is transfered

• No response verification

DNS forwarders rely on upstream resolvers

Vulnerable DNS Software

• Home routers

16 models are tested (by real attacks in controlled environment)8 models are vulnerable

• DNS software

2 kinds of popular DNS software are vulnerable

Brand	Model	EDNS(0)	No Tru- ncation	Cache by Record	Vulnerable						
D-Link ASUS Linksys	DIR 878 RT-AC66U B1 WRT32X		\$ \$ \$	\$ \$	\$ \$ \$	Software	Version	EDNS(0) & No truncation	Cache by Record	No Veri- fication	Vulnerable
Motorola Xiaomi	M2 3G	1 1	5 5		<i>s</i>	dnsmasq MS DNS	2.7.9 2019	\ \	\ \	\ \	\$ \$
GEE Wavlink Volans	Gee 4 Turbo A42 VE984GW+		5 5 5	\ \ \	5 5 5						16

Vulnerable DNS Software

• Home routers

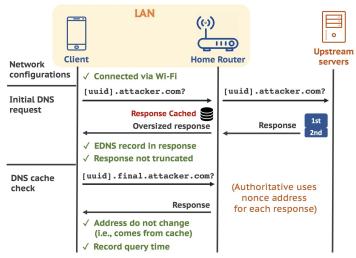
16 models are tested (by real attacks in controlled environment)8 models are vulnerable

• DNS software

2 kinds of popular DNS software are vulnerable

• Responsible Disclosure

ASUS and D-Link release firmware patches Linksys accepts issue via BugCrowd


Measuring Clients Potentially Under Risk

• Collect vantage points

Implement measurement code in a network diagnosis tool **20K clients**, mostly located in China

• Check the forwarder conditions

Ethical considerations: no real attack 40% do not support EDNS(0) yet Estimated vulnerable clients: 6.6%

Discussion

• Mitigation for DNS forwarders

Perform response verification (e.g., DNSSEC) DNS caching by response (short-term solution)

• Lack clear guidelines of DNS forwarders What role should they play? What features should be supported?

- An attack targeting DNS forwarders
- Affects forwarder implementations extensively
- Call for more attention on DNS forwarder security

Any Questions? zxf19@mails.tsinghua.edu.cn