

TsuKing: Coordinating DNS Resolvers and Queries into Potent DoS Amplifiers

Tsuking

Wei Xu, Xiang Li, <u>Chaoyi Lu</u>, Baojun Liu, Jia Zhang, Jianjun Chen, Haixin Duan, Tao Wan *Tsinghua University; CableLabs*

November 2023

#THU @CCS2023

Name of Attack - Breakdown

Name of Attack - Breakdown

Tsu-King

Tsunami (Traffic amplification ability)

 Cause: DNS implementation choices & complex infrastructure

Name of Attack - Breakdown

Tsu-King

-query

Server

₋aver∰M

Tsunami (Traffic amplification ability)

Cause: DNS implementation choices & complex infrastructure

.aver

King 📢 (Server coordination ability)

Coordinates DNS server systems -> 3,000+× amplification factor (*king* of DoS)

Design choices of the DNS protocol

- Runs over UDP → reflected DoS attacks possible **
- \Rightarrow Response larger than query \rightarrow *traffic amplification*

Reflected DoS attack via DNS

Design choices of the DNS protocol

- Runs over UDP → reflected DoS attacks possible •
- \Rightarrow Response larger than query \rightarrow *traffic amplification*

Multiple types of attacks have been reported

Category	Attack name	Key concept	Amp. factor
Increasing DNS Special RRtypes		Exploits large ANY and TXT responses	200+
response size	DNSSEC RRs	DNSSEC-signed domains have larger responses	50+
	DNS Unchained	Long CNAME chains for resolvers to follow	8.51
Increasing # of	TsuNAME	Cyclic CNAME/NS dependencies for resolvers to follow	500
DNS responses	NXNSAttack	Responses with excessive NSes for resolvers to follow	3,154
	Routing Loops	Middleboxes in a routing loop intercepting DNS queries	927,726 *

Reflected DoS attack via DNS

* In rare cases only.

Design choices of the DNS protocol

- Runs over UDP → reflected DoS attacks possible •
- \Rightarrow Response larger than query \rightarrow *traffic amplification*

Multiple types of attacks have been reported

Category	Attack name	Key concept	Amp. factor
Increasing DNS	Special RRtypes		200+
response size	DNSSEC RRs		50+
	DNS Unchained	Maximizing the amplification potential	8.51
Increasing # of	TsuNAME	of one single DNS server	500
DNS responses	NXNSAttack		3,154
	Routing Loops		927,726 *

Reflected DoS attack via DNS

* In rare cases only.

Even greater DoS potential? Can we deliberately *coordinate* the power of

Can we deliberately *coordinate* the power of DNS servers to form bigger attacks?

Take a look at how *complex* the DNS infrastructure has become.

Multiple types and layers of DNS servers

- \therefore DNS forwarders \rightarrow pass queries to upstream (e.g., another forwarder)
- \Rightarrow Large public DNS services \rightarrow complexes of load balancers, caches, egress servers, etc.

2.27 Million **Open DNS servers** Large public DNS service (e.g., Google Public DNS) Frontend caches Anycast **Pick** reso

The complex DNS infrastructure

* Data from Censys. as of Oct 2023

Backend resolvers

Multiple types and layers of DNS servers

- DNS forwarders \rightarrow pass queries to upstream (e.g., another forwarder) •••
- \Rightarrow Large public DNS services \rightarrow complexes of load balancers, caches, egress servers, etc.
- A typical DNS resolution path now looks like this

Multiple types and layers of DNS servers

- DNS forwarders \rightarrow pass queries to upstream (e.g., another forwarder) •••
- \Rightarrow Large public DNS services \rightarrow complexes of load balancers, caches, egress servers, etc.
- A typical DNS resolution path now looks like this

Multiple types and layers of DNS servers

- DNS forwarders \rightarrow pass queries to upstream (e.g., another forwarder) •••
- \Rightarrow Large public DNS services \rightarrow complexes of load balancers, caches, egress servers, etc.

A typical DNS resolution path now looks like this

So I get it, the DNS is complex.

But how is this relevant to traffic amplifcation?

Amplification ability: DNS retries

***** DNS is so critical that, it will not take no for an answer

Reasons of DNS failure: *IPv6 incompatibile, timeout, misconfiguration, ...*

So upon failure, please *retry* for a few more times

Adopted by mainstream DNS software

DNS software	# of retries
BIND9	13
Unbound	9
Knot	3

Amplification ability: DNS retries

DNS is so critical that, it will not take no for an answer

- Reasons of DNS failure: *IPv6 incompatibile, timeout, misconfiguration, ...*
- So upon failure, please *retry* for a few more times
 - Adopted by mainstream DNS software

For a DRS, retries may exit from *different egresses*

Prevents query aggregation and cache hits

DNS software	# of retries
BIND9	13
Unbound	9
Knot	3

Amplification ability: DNS retries

Wait... You exploit retries?

That's not even enough to cause ripples!

Attack variant I: DNSRetry

There are bogus DRS implementations that retry aggressively

- They themselves already are powerful amplifiers **
- Max # of retries by one DRS: 117,541 **

# of retries	# of open DRSes	% of tested
> 2	925,500	69.8%
> 10	407,581	30.7%
> 100	31,660	2.4%
> 1,000	529	0.04%

Attack variant I: DNSRetry - Evaluation

There are bogus DRS implementations that retry aggressively

- They themselves already are powerful amplifiers
- Max # of retries by one DRS: 117,541 **

# of retries	# or oper
> 2	925,500
> 10	407,581
> 100	31,660
> 1,000	529

- Select 10 DRSes that retry aggresively
- ☆ Attacker sends 1.3 pkt/s → Victim receives 882 pkt/s

DRSes	% of tested
	69.8%
	30.7%
	2.4%
	0.04%

Attack variant/I: DNSRetry - Evaluation

Alright, but lots of them are not aggressive at all...

Let's *chain* these ripples into bigger waves!

#THU @CCS2023

Recursive DNS resolution guided by referrals

Referrals tell recursive resolvers who to ask next

(ns10.dnsmadeeasy.com)

Recursive DNS resolution guided by referrals

Referrals tell recursive resolvers who to ask next

SLD authoritative server (ns10.dnsmadeeasy.com)

Recursive DNS resolution guided by referrals

Referrals tell recursive resolvers who to ask next

Recursive DNS resolution guided by referrals

Use evil referrals to divert queries arbitrarilly **

King: estimating latency between arbitrary internet end hosts [Gummadi, et al. CCR '02]

Inspired by:

Recursive DNS resolution guided by referrals

Use *evil referrals* to divert queries arbitrarilly **

King: estimating latency between arbitrary internet end hosts [Gummadi, et al. CCR '02]

Inspired by:

Recursive DNS resolution guided by evil referrals

attacker.org A?

Recursive DNS resolution guided by evil referrals

attacker.org A?

#THU @CCS2023

Recursive DNS resolution guided by evil referrals

attacker.org A?

Recursive DNS resolution guided by evil referrals

attacker.org A?

Recursive DNS resolution guided by evil referrals

attacker.org A?

Recursive DNS resolution guided by evil referrals

Final referral: points to victim

Attack variant II: DNSChain - Evaluation

Evaluation in controlled environment

We select from exploitable DRSes and coordinate them into *layers*

# of DRSes coordinated in each layer								America factor
Setting	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Amp. factor
# 1	1	4	8	-	-	-	-	288
# 2	1	4	8	16	32	-	-	591
# 3	1	4	8	16	32	64	128	3,702

Attack variant II: DNSChain - Evaluation

Evaluation in controlled environment

We select from exploitable DRSes and coordinate them into *layers*

0 - 11:	# of DRSes coordinated in each layer							
Setting	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	
# 1	1	4	8	-	-	-	-	28
# 2	1	4	8	16	32	-	-	59
# 3	1	4	8	16	32	64	128	3,

Can the attack last?

- Setting #2 (5 layers); attacker send at 0.8 pkt/s
- Amplification effect persists in 6 hours

mp. factor

38

1

Attack variant III: DNSLoop

- Modified from DNSChain, creating a loop of retry queries
 - Final referral: points back to DRS #1
- The victim and goal change now
 - ALL DRSes in the loop become victims
 - Goal is to exhause their resources
 - Increasing amplification factor is a non-goal

Attackers may also

- Inject new rounds of retries to the loop
- Simply by querying DRS #1

Attack variant/III: DNSLoop - Evaluation

Evaluation in controlled environment - can the loop last?

- Coordinates 7 layers of DRSes **
- Build RouterOS host as ingress (rate limit at 1 pkt/s, due to ethical considerations) *
- Attacker sends 1 query only, loop lasts until deliberate stop

Attack variants II & III

Seems overwhelming, but can many DRSes be used?

What are the conditions of successful attacks?

#THU @CCS2023

Conditions of successful attacks

DRS not honoring cleared RD bit in DNS header

- RD (recursion desired) =0: do not perform recursion, find answers locally in cache *
- Usually *cleared by egress*, as authoritative servers cannot perform recursion *
- DRS honors RD \rightarrow chain cannot continue *
- 27.2% of tested DRSes do not honor •••

Transaction ID	O Opcode R D Flags Z RCODE	
QDCOUNT	ANCOUNT	
NSCOUNT	ARCOUNT	

Conditions of successful attacks

DRS not honoring cleared RD bit in DNS header

- RD (recursion desired) =0: do not perform recursion, find answers locally in cache **
- Usually *cleared by egress*, as authoritative servers cannot perform recursion *
- DRS honors RD \rightarrow chain cannot continue *
- ✤ 27.2% of tested DRSes do not honor
- DRS not deployed with negative caching [RFC 2308] **
 - Negative caching records DNS failures \rightarrow *effectively eliminates retries* **
 - 43% of tested DRSes do not deploy *

Transaction ID	0 R	Opcode	R D	Flags	Z	RCODE
QDCOUNT				ANCOU	NT	
NSCOUNT				ARCOU	NT	

Conditions of successful attacks

ORS not honoring cleared RD bit in DNS header

- RD (recursion desired) =0: *do not perform recursion, find answers locally in cache*
- Usually *cleared by egress*, as authoritative servers cannot perform recursion *
- DRS honors RD \rightarrow chain cannot continue
- ✤ 27.2% of tested DRSes do not honor
- DRS not deployed with negative caching [RFC 2308]
 - ✤ Negative caching records DNS failures → effectively eliminates retries
 - ✤ 43% of tested DRSes do not deploy
- DRS has multiple egresses: the more, the better
 - 52% of tested DRSes have over 10 egresses

Transaction ID	O Opcode R Flags Z RCODE
QDCOUNT	ANCOUNT
NSCOUNT	ARCOUNT

What can we do to prevent this?

Correct bogus implementations such that attack conditions cannot be fulfilled.

Mitigation

Tsu-King

Tsunami

(Traffic amplification ability)

- Cause 1: complex DNS infrastructure *
- Cause 2: aggressive retries exhibited by bogus * implementations

Cause 3: not following DNS specifications

King 👥 (Server coordination ability)

(in this case, the *RD* flag)

Mitigation

Avoid aggressive retries

A modest number of retries should suffice, as adopted by mainstream software

Follow DNS specifications

Honor the DNS flags: if RD tells not to perform recursion, just don't

Deploy additional mechanisms that add protection

- Negative caching: good to reduce retries
- Egress and cache management: reduce independence between egress servers

Feedback from vendors

DNS software & public DNS: not honoring RD flag

- Confirmed and fixed: RouterOS, Unbound; 114DNS, AliDNS, DNSPod
- Proposed plans but not accepted as security issue: PowerDNS

 \checkmark - Fix not following cleared RD flags potentially enables amplification DDoS attacks, reported by Xiang Li and Wei Xu from NISL Lab, Tsinghua University. The fix stops query loops, by refusing to send RD=0 queries to a forwarder, they still get answered from cache.

✤ 3 assigned CVE enrties

CVE-2023-24711 CVE-2023-24712 CVE-2023-28455

Unbound fix message

Questions?

Paper website: https://tsuking.net

Lead authors:

- Wei Xu (xu-w21@mails.tsinghua.edu.cn)
- Xiang Li (x-I19@mails.tsinghua.edu.cn)

Presented by:

Chaoyi Lu (luchaoyi@tsinghua.edu.cn, <u>https://chaoyi.lu</u>)

