
Poison Over Troubled Forwarders:
A Cache Poisoning Attack Targeting DNS Forwarding Devices

Xiaofeng Zheng∗,†, Chaoyi Lu∗, Jian Peng∗, Qiushi Yang†,
Dongjie Zhou§, Baojun Liu∗, Keyu Man‡, Shuang Hao¶, Haixin Duan∗,†∗and Zhiyun Qian‡

∗ Tsinghua University, † Qi An Xin Technology Research Institute,
§ State Key Laboratory of Mathematical Engineering and Advanced Computing,

‡ University of California, Riverside, ¶ University of Texas at Dallas

Abstract
In today’s DNS infrastructure, DNS forwarders are devices
standing in between DNS clients and recursive resolvers.
The devices often serve as ingress servers for DNS clients,
and instead of resolving queries, they pass the DNS requests
to other servers. Because of the advantages and several use
cases, DNS forwarders are widely deployed and queried by
Internet users. However, studies have shown that DNS for-
warders can be more vulnerable devices in the DNS infras-
tructure.

In this paper, we present a cache poisoning attack target-
ing DNS forwarders. Through this attack, attackers can in-
ject rogue records of arbitrary victim domain names using
a controlled domain, and circumvent widely-deployed cache
poisoning defences. By performing tests on popular home
router models and DNS software, we find several vulnera-
ble implementations, including those of large vendors (e.g.,
D-Link, Linksys, dnsmasq and MS DNS). Further, through
a nationwide measurement, we estimate the population of
Chinese mobile clients which are using vulnerable DNS for-
warders. We have been reporting the issue to the affected
vendors, and so far have received positive feedback from
three of them. Our work further demonstrates that DNS for-
warders can be a soft spot in the DNS infrastructure, and
calls for attention as well as implementation guidelines from
the community.

1 Introduction

The Domain Name System (DNS) serves as one of the funda-
mental infrastructures of the Internet. It provides translation
of human-readable domain names to numerical addresses,
and is the entry of almost every action on the Internet. Ac-
cording to its initial standard, when a domain name needs to
be resolved, a DNS client sends a query to a recursive re-
solver. The recursive resolver in turn fetches answers from
authoritative servers.
∗Haixin Duan is the corresponding author.

However, as the DNS ecosystem has evolved dramatically,
the system now consists of multiple layers of servers [62].
Specifically, DNS forwarders refer to devices standing in be-
tween DNS clients and recursive resolvers. Upon receiving
DNS queries, the devices do not resolve the domain name
by themselves, but pass the requests to other servers (e.g., an
upstream recursive resolver). To name a few use cases, DNS
forwarders can serve as convenient default resolvers, load
balancers for upstream servers, and gateways of access con-
trol. Meanwhile, for clients in a local network, using DNS
forwarders can mitigate security risks, as the devices are not
directly exposed to Internet attackers [49].

Because of the advantages, DNS forwarders are fairly
prevalent devices in the DNS infrastructure. It has been re-
ported that over 95% open DNS resolvers are actually for-
warders [62], and that a vast number of them run on residen-
tial network devices [57, 64]. Forwarding is also widely im-
plemented in DNS software (e.g., BIND [25], Unbound [27],
Knot Resolver [13] and PowerDNS [18]) and home routers
(e.g., TP-Link [21], D-Link [5] and Linksys [4]).

Given its prevalence, though, there have been only few
studies on the understanding and security status of DNS for-
warders. In addition, works have shown that DNS forwarders
can actually be a soft spot in the DNS infrastructure. For
instance, a considerable number of such device fail to per-
form checks on ephemeral port numbers and DNS transac-
tion IDs, and are vulnerable to cache poisoning attacks or
DoS [49, 63, 64]. The discoveries call for deployments of
cache poisoning defences, such as randomizing port num-
bers [52], 0x20 encoding [36] and DNSSEC [30].

In this paper, we further demonstrate that DNS forwarders
can be vulnerable devices in the ecosystem, by proposing a
cache poisoning attack. Using our attack methods, an ad-
versary can use a controlled domain name and authoritative
server to inject records of arbitrary domain names. In ad-
dition, the attack bypasses widely-deployed defences includ-
ing randomized ephemeral port numbers and 0x20 encod-
ing. We also perform tests on current implementations of
DNS forwarders, and find several home router models and

DNS software vulnerable to this attack. The vulnerable im-
plementations include those from popular vendors, such as
D-Link [5], Linksys [4], dnsmasq [7] and MS DNS [8]. We
have been reporting the issue to the affected vendors, and
so far have received positive responses from three of them.
Furthermore, we perform a nationwide measurement of the
affected client population, and estimate the scale of Chinese
mobile devices which are using the vulnerable devices. In
the end, we find that the industry have diverse understanding
on the role of DNS forwarders, and there is still a lack of for-
warder implementation guidelines in the DNS specifications.
Contributions. In this paper, we make the following contri-
butions.

New attack. We propose a type of cache poisoning attack
targeting DNS forwarders. Through this attack, an adver-
sary can use a controlled domain name to inject DNS records
of arbitrary victim domain names, and circumvent current
cache poisoning defences.

New findings. We find several home router models and
DNS software vulnerable to the attack, including those by
large developers. We have been reporting the vulnerability
to affected vendors.

Put together, this paper demonstrates an attack targeting
DNS forwarders, and sheds light on their security problems.
DNS forwarders are prevalent devices in the ecosystem, yet
we show that they can be more vulnerable to cache poisoning
attacks. Therefore, we believe more attention should be paid
from the community to DNS forwarder specifications and
security.
Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 gives an overview on prior DNS
cache poisoning attacks. Section 3 describes the role of for-
warders in the DNS ecosystem. Section 4 illustrates our
attack model. Section 5 elaborates our tests on vulnerable
DNS forwarder software. Section 6 performs a nationwide
measurement study on the population of affected clients.
Section 7 discusses the implementation and specification of
DNS forwarders. Section 8 extends the attack model and
proposes mitigation. Section 9 summarizes related work and
Section 10 concludes the paper.

2 Prior DNS Cache Poisoning Attacks
Targeting Recursive Resolvers

DNS cache poisoning attacks have been known for long, and
they pose serious threats to Internet users [65, 67, 69]. In
this section we first give an overview on two major types of
known attack methods, and discuss their limitations.

2.1 Forging Attacks

The goal of forging attacks is to craft a rogue DNS re-
sponse and trick a resolver into accepting it. In detail,

Figure 1: Defragmentation cache injection attacks targeting
recursive resolvers.

a DNS response is accepted when the following fields
matches a DNS query: question section, DNS transaction
ID, source/destination addresses and port numbers. If an at-
tacker forges a DNS response with the correct metadata be-
fore the authenticated response arrives, the rogue response
can be accepted by the resolver and the attack succeeds. The
most influential case of forging attacks is the Kaminsky At-
tack [53] in 2008, which affects nearly all software designed
to work with DNS.
Limitations. The key to mitigating forging attacks is to in-
crease the randomness of DNS query packets. As required
by RFC 5452 [52], resolver implementations now must use
randomized ephemeral port numbers and DNS transaction
IDs. Meanwhile, resolvers also adopt 0x20 encoding [36] to
mix the upper and lower spelling cases of the name in the
question section. As a result, the widely-deployed defences
have significantly increased resolvers’ resistance to forging
attacks.

2.2 Defragmentation Attacks

Recent studies [33, 47–49, 66] have uncovered a new type of
DNS cache poisoning attack based on IP defragmentation.
The attack exploits the fact that the 2nd fragment of a frag-
mented DNS response packet does not contain DNS or UDP
headers or question section, so it can bypass randomization-
based defences against forging attacks. As shown in Fig-
ure 1, an attacker first crafts a spoofed 2nd fragment with
rogue DNS records, and issues a DNS query of the victim
domain name. The response from an authoritative server
is forced to be fragmented by the attacker (through a sep-
arate process ahead of time). At the recursive resolver, the
legitimate 1st fragment is reassembled with the spoofed 2nd
fragment, which produces a rogue DNS response. As a re-
sult, the rogue records are cached by the recursive resolver
and the attack succeeds. We provide more background on IP
fragmentation in Appendix A.

The core challenge of defragmentation attacks is to force
a fragmentation of the DNS response, and there are two ap-

Figure 2: CDF of lowered MTU of a) authoritative servers
of Alexa Top 100K domains, and b) 2M open DNS resolvers
from an Internet-wide scan.

proaches proposed so far. The first approach is to lower the
Path Maximum Transmission Unit (PMTU) between the re-
cursive resolver and authoritative servers [33]. We term this
type of attack as PMTU-based defragmentation attack. By
contrast, the second approach is to send DNSSEC queries to
solicit enlarged DNS responses with DNSSEC records, so
that they reach limits of MTUs (e.g., 1,500 bytes for Ether-
net) and will be fragmented [48]. We term this type of attack
as DNSSEC-based defragmentation attack.
Limitations. Previous defragmentations have high require-
ments on the PMTU behavior of authoritative name servers,
as well as the victim domains. Specifically, PMTU-based de-
fragmentation requires an attacker to send specially-crafted
ICMP fragmentation needed error messages to an authorita-
tive server claiming a small PMTU and trick it to lower the
PMTU for a specific resolver. However, we find this is im-
practical in most cases. As shown in Figure 2, for authorita-
tive servers of Alexa Top 100K domains, only 0.7% are will-
ing to reduce their MTU to less than 528 bytes. Since DNS
responses are typically smaller than 512 bytes, it is not likely
that they will be forcibly fragmented. As for DNSSEC-based
attacks, they require non-validating recursive resolvers and
can be mitigated through proper DNSSEC deployment and
validation. Moreover, the attack only works for DNSSEC-
signed victim domains. Currently, DNSSEC deployment is
still low among domain names (e.g., less than 1.85% for
popular domains in 2017 [34]), thus the target of DNSSEC-
based defragmentation attacks is limited.

3 DNS Forwarder

Traditionally, a DNS resolution process involves a DNS
client (or stub resolver), a recursive resolver and authori-
tative servers. When a domain needs to be resolved, the
DNS client sends a query to a recursive resolver, which in
turn fetches answers from authoritative servers. For maxi-
mum protocol capability, it is recommended that DNS clients
use a full-service resolver directly [31]. However, in reality,
the DNS infrastructure has become far more complex than

Figure 3: DNS infrastructure with forwarders

this simple model, often involving multiple layers of servers.
One of the new roles introduced in the infrastructure [29,70],
as shown in Figure 3, is DNS forwarders1. They sit in be-
tween stub and recursive resolvers, and often serve as ingress
servers for DNS clients (e.g., home wireless routers). When
a DNS forwarder receives a query, instead of performing the
resolution recursively, it simply forwards the query to an up-
stream recursive resolver. To name a few use cases, it can
serve as a default local resolver (with caching capability) for
clients (e.g., clients using DHCP to obtain network config-
urations in LAN), perform load balancing among upstream
recursive resolvers, and can be used to enforce access con-
trol.
DNS forwarder vs. recursive resolver. In the latest RFC
on DNS terminology (i.e., RFC 8499 [50]), recursive re-
solvers are resolvers which “act in recursive mode”. When
it receives a DNS query, a recursive resolver accesses other
servers, and should respond with the final answer to the
original query. As such, recursive resolvers should handle
referrals to other servers and aliases to other names (i.e.,
CNAMEs), and aggregate the resource records into one final
answer. Recursive resolvers should also perform integrity
checks such as the bailiwick check [39] and DNSSEC val-
idation [30]. In contrast, a DNS forwarder does not recur-
sively resolve queries, and instead relies on the integrity of
its upstream server. As a result, DNS forwarders do not han-
dle referrals, and are typically not in the position to verify
the responses. Otherwise, forwarders will be repeating the
work of resolvers, e.g., checking each referral, defeating the
purpose of having another layer of indirection. As we will
articulate later, this is a key weakness of DNS forwarders
which enables our cache poisoning attack.

4 Defragmentation Attacks
Targeting DNS Forwarders

As we have seen, previous defragmentation attacks have lim-
itations regarding the ability to trigger fragmentation. In this
section, we propose a novel modified defragmentation at-
tack that works perfectly against DNS forwarders due to its
unique role in the DNS infrastructure.

1Also defined as “FDNS” in literature.

4.1 Attack Overview

Threat Model. Studies have discovered a large number
of DNS forwarders running on residential network devices,
such as home routers [64]. As such, in our threat model we
assume the attacker is located in the same LAN as the DNS
forwarder, and can issue DNS queries. This can occur in an
open Wi-Fi network (e.g., at coffee shops and airports) with-
out strong security protection or password. This can also
happen in some enterprise networks where a guest, insider,
or compromised machine acts as an attacker. In some cases,
forwarders on home routers can also be open to public due
to misconfigurations [57].

Our attack starts out by asking the question: can we force
fragmentation reliably and deterministically? It turns out that
we can, if the query is sent towards an authoritative name
server under an attacker’s control – as the server can inten-
tionally send an oversized response. At a first glance, this
is meaningless because that would mean that the domain
hosted on the attacker’s authoritative name server also be-
longs to the attacker already (e.g., attacker.com). It is use-
less to poison the attacker’s own domain. However, our key
insight is that forwarders have total reliance on upstream re-
solvers to perform response validation (see Section 3). Due
to the unique role of DNS forwarder, it is actually possi-
ble to inject spoofed fragments containing records of other
domains (e.g., victim.com) and trick the forwarder to cache
such records.
Workflow. Figure 4 illustrates this idea. After probing the
current resolver IPID (step 0), an attacker feeds the vic-
tim DNS forwarder with a spoofed 2nd fragment contain-
ing rogue DNS records (step 1) and launches a DNS re-
quest (step 2). The aggregated final response from the at-
tacker’s authoritative servers (oversized, larger than Ether-
net MTU) is fragmented when leaving the recursive resolver
(step 3b), and defragmented at the DNS forwarder (step 3c).
In particular, at defragmentation the legitimate 1st fragment
is reassembled with the spoofed 2nd fragment, producing a
rogue response. Consequently, the rogue DNS records are
then written into the forwarder’s cache (as forwarders are not
in the position to validate upstream responses), and handed
over to downstream devices. As is the case with prior defrag-
mentation attacks, an attacker no longer needs to guess DNS
and UDP metadata (e.g., DNS transaction ID and ephemeral
port numbers), which does not exist in the 2nd fragment. Us-
ing oversized responses, our new attack can overcome the
key limitation in prior defragmentation attacks that forcing
fragmentation is difficult.

4.2 Forcing DNS Response Fragmentation

Forcing DNS response fragmentation (see Figure 4, step 3b)
is one of the key steps in defragmentation attacks. As dis-
cussed in Section 2, previous studies use two different meth-

Figure 4: Defragmentation cache poisoning attack targeting
DNS forwarders in the same LAN (e.g., DNS forwarders of
residential network devices).

ods to force fragmentation: reducing PMTU and enlarging
DNS responses with DNSSEC. Let us reason about whether
these two methods can be applied to DNS forwarders suc-
cessfully.
Reducing PMTU: ineffective for DNS forwarder attacks.
We first consider borrowing from PMTU-based defragmen-
tation attacks, where an attacker lowers PMTU to force re-
sponse fragmentation. According to our attack model, the
DNS response needs to be fragmented between the recursive
resolver and the DNS forwarder (see Figure 4, step 3b), thus
an attacker should attempt to lower the MTU of the upstream
recursive resolver. Using the same approach as in [33] (i.e.,
sending ICMP fragmentation needed error messages), we
perform a measurement on 2M open DNS resolvers in the
wild. In the end, as also shown in Figure 2, the results turn
out to be unsatisfying: only 0.3% resolvers can reduce their
packet size to below 512 bytes, and less than 37% reduce to
below 600 bytes.
DNSSEC-based fragmentation: even less effective
against DNS forwarders. We already know that leveraging
DNSSEC is very limited as it only works for a limited range
of domains and servers. In addition, DNS forwarders in this
case also need to support DNSSEC. Otherwise, the upstream
recursive resolver will not even send DNSSEC responses.
Solution: oversized DNS response using CNAME. As
mentioned earlier, an attacker-controlled authoritative name
server can intentionally create an oversized DNS response
larger than the Ethernet MTU (i.e., larger than 1,500 bytes),
such that it will always be fragmented at the recursive re-
solver.

As shown in Figure 5, the method to create such large
responses is through a chain of CNAME records, followed
by one final A record. When handling this query, recur-
sive resolvers will query the aliases in the chain (see Fig-
ure 4, step 2d) and aggregate the CNAME records into the
final response. The attacker fills the chain with enough

Figure 5: Oversized DNS response using CNAME

dummy CNAME records to make the final response larger
than the Ethernet MTU, such that it will always be frag-
mented at the recursive resolver. In the spoofed 2nd frag-
ment (sent to the DNS forwarder), the attacker “tampers”
with the last CNAME record by pointing it to a victim do-
main (victim.com), and the last A record by pointing it to
a rogue address (a.t.k.r). After the response is defrag-
mented at the forwarder, the rogue A record will be cached.

The key here is that the recursive resolver sees only a legit-
imate oversized response from the authoritative name server
(Figure 5(a)), without violating bailiwick rules. Therefore,
it will attempt to relay this response as a whole back to
the forwarder, with fragmentation. However, what the for-
warder sees on its end is actually a tampered response (Fig-
ure 5(b)), due to the spoofed 2nd fragmented injected ahead
of time. Had the resolver seen such a response (where the
attacker.com eventually points to victim.com), it will reject
the response during recursive queries of the aliases. This is
exactly the reason our attack targets DNS forwarders as they
are not in the position to perform validations.

The use of oversized DNS responses requires that all
DNS servers in our attack model support Extension Mech-
anisms for DNS (EDNS(0)) [37]. As an important DNS
feature, EDNS(0) provides support to transfer DNS packets
larger than 512 bytes over UDP, and is being increasingly
supported by software vendors and DNS operators. Cur-
rently it has been implemented by mainstream DNS software
(e.g., BIND [25], Knot DNS [13], Unbound [27] and Pow-
erDNS [18]) and supported by most recursive resolvers [61].
To indicate EDNS(0) support, servers use one OPT record in
the additional section of a DNS packet to carry EDNS op-
tions.

4.3 Crafting Spoofed Fragments

For fragmented DNS responses, only the 1st fragment con-
tains DNS and UDP headers (see Appendix A for more back-
ground of IP fragmentation). As a result, to craft a spoofed
2nd fragment, an attacker does not need to predict ephemeral
port numbers and DNS transaction IDs. However, for suc-
cessful defragmentation, an attacker needs to craft the fol-
lowing IP header fields of the spoofed 2nd fragment.

IPID prediction. IP identification (IPID) is a 16-bit field
in the IP header, which is used to determine which data-
gram a fragment belongs to. For successful defragmentation,
the IPIDs of the spoofed 2nd fragment and the legitimate
1st fragment (from the upstream resolver) should agree. As
such, an attacker should be able to predict the IPID assign-
ment of the upstream resolver (see Figure 4, step 1). In gen-
eral, this is a well studied topic in the literature and a number
of techniques have been proposed [28, 49]. We give a sum-
mary below on how we can take advantage of predictable
IPID assignment and then conduct a measurement to show
how most DNS resolvers in the wild can be exploited.

IPID assignment algorithms. There are three major IPID
assignment algorithms: global IPID counter, hash-based
IPID counter [44], and random IPID assignment. Global
IPID counter increases by one for every sent packet, which is
highly predictable [55]. Hash-based IPID counter algorithms
first use a hash function to map an outgoing packet to one
in an array of IPID counters, and then increase the selected
counter by a random amount, chosen from a uniform distri-
bution between 1 and the number of system ticks (typically
milliseconds) since the last packet transmission that used the
same counter [28]. If the two probes are sent close enough in
time, then the IPID increments from the responses are very
predictable. In fact, since the defragmentation cache can typ-
ically buffer 64 fragments [56], an attacker can make a pre-
diction on a range of IPID values instead of a single one. The
hash function determines which IPID counter is used, based
on the source and destination IP address of the sent packet
(the same source and destination IP pair will therefore al-
ways result in the same IPID counter getting selected). In
our attack, an attacker can first probe for the current IPID
value of the upstream resolver, and use one or more pre-
dicted IPIDs to place the spoofed 2nd fragment. The probing
response (see Figure 4, step 0b) and the 1st fragment (see
Figure 4, step 3b) are both sent to the “NAT-ed” public ad-
dress of the LAN, so they are guaranteed to use the same
IPID counter on the upstream resolver. As the attacker ini-
tiates the entire sequence of packets and controls the timing
of these packets, it can make sure that the gap between the
initial IPID and the later one (in the resolver’s response) is
small enough and hence predictable (because they are gener-
ated close in time, e.g., a few milliseconds apart).

Operating systems. As reported by previous studies [28,
33, 55, 71], early versions of Windows (prior to Windows 8)
use global IPID counters, and recent Windows and Linux
versions use hash-based IPID counters. By setting up vir-
tual machines and probe their IPID assignments, we confirm
that the latest versions of Windows 10 (Professional, Ver-
sion 1909 (18363.657)) and Ubuntu (5.3.0-29-generic) both
use hash-based IPID counters. Since most servers (including
recursive resolvers) on the Internet are equipped with Win-
dows or Linux, we believe this technique covers most of the
ground.

Table 1: IPID assignment of egress resolvers
IPID

Assignment Name Address # Tested
Resolvers

Hash-based
IPID counters
(Exploitable)

Cloudflare 1.1.1.1 64
Quad9 9.9.9.9 8
Comodo 8.26.56.26 2
OpenDNS 208.67.222.222 14
Norton 199.85.126.10 2

Random
Google 8.8.8.8 15
Verisign 64.6.64.6 24

Open DNS resolvers. We leverage the open DNS resolver
scanning result of Censys [38] on Jan 8, 2020. For each re-
solver in the list, we send three DNS queries in a row of our
own domain name, and check whether the IPIDs in the cor-
responding DNS response packets are increased by a fixed
value. As a result, 4,988,186 resolvers respond to all three
queries, and 4,235,342 (84.9%) use incremental IPID coun-
ters which can be exploited in the attack.

Popular public DNS services. Public DNS services often
use anycast for load balancing. For example, DNS queries
to Google’s 8.8.8.8 can exit from hundreds of “egress” re-
solvers (e.g., 74.125.19.*). From a client’s perspective, be-
cause DNS responses come from different egress resolvers,
the public DNS services appear to use random IPID assign-
ment. However, in our defragmentation attack, because the
authoritative server is under an adversary’s control, an at-
tacker can break the load balancing by responding to only
one selected egress resolver address. If the selected egress
resolver uses incremental IPID counters, the attack is still
possible.

To begin our measurement, we build a custom au-
thoritative server for our own domain name (termed
as echo.dnsaddr). On receiving a DNS query (e.g.,
[nonce].echo.dnsaddr), the authoritative server records
the source IP address of the DNS query (i.e., egress re-
solver address), and echoes the resolver address through an
A record in the DNS response2. Using this technique, we can
separate DNS responses sent from different egress resolvers,
and observe their IPID assignment respectively.

We choose 7 popular public DNS services for our tests:
Cloudflare [2], Google [10], Quad9 [19], OpenDNS [1],
Verisign [22], Comodo [3] and Norton [16]. Our vantage
points send DNS queries of [nonce].our.domain (to avoid
caching) to each public DNS service and capture the DNS
response packets.

As shown in Table 1, we find that five public DNS ser-
vices use hash-based IPID counters on their egress resolvers,
which can be exploited in the attack. Google and Verisign

2Our authoritative server is similar to Akamai’s whoami.akamai.net
tool [12]. The difference is that our server replies to *.echo.dnsaddr,
while Akamai’s tool does not support queries of arbitrary subdomain.

use unpredictable IPIDs, which are not exploitable. Due to
space limit, we put more detailed results in Appendix B. To
confirm that the public DNS services are exploitable, in Sec-
tion 5 we also launch real attacks using a public DNS service
as upstream resolver.
Other header fields. For successful defragmentation of
the 1st fragment and the spoofed 2nd fragment, the attacker
should also craft the following header fields in the spoofed
2nd fragment.

Fragment offset. The fragment offset in the spoofed 2nd
fragment should indicate its correct position in the original
datagram. Since contents of the oversized DNS response are
fully controlled by the attacker (see Figure 5), the offset of
the 2nd fragment can be calculated.

IP source address. The spoofed 2nd fragment should
come from a spoofed address of the upstream recursive re-
solver. To learn the address of the upstream recursive re-
solver, an attacker can leverage the echo.dnsaddr method
in our public DNS service measurement (i.e., send a query of
echo.dnsaddr to the DNS forwarder, and check the resolver
address encoded in the DNS response). An attacker may also
setup an authoritative server of a controlled domain, query
the DNS forwarder for the domain name, and observe the up-
stream recursive resolver address at the authoritative server.
In networks of residential devices (i.e., LAN), IP spoofing is
generally allowed.

Fitting the UDP checksum. The UDP checksum (in the le-
gitimate 1st fragment) is calculated from the IP header, UDP
header and the entire UDP payload. Tampering with records
in the spoofed 2nd fragment produces a checksum mismatch,
so an attacker should also adjust other bytes in the spoofed
2nd fragment to fit the original checksum. In fact this task
is easy, as in our model the contents of the DNS response
are fully controlled by the attacker, thus the original check-
sum of the DNS response is already sknown. As a result, the
attacker can adjust other bytes in the spoofed 2nd fragment
with simple calculation (as in [33]) to fit the UDP checksum.

4.4 Conditions of Successful Attacks

Driven from our threat model, a DNS forwarder should sat-
isfy the following conditions to be successfully attacked.
EDNS(0) support. EDNS(0) allows large DNS packets over
UDP. As an important DNS feature, we expect that it is being
increasingly supported by software vendors and DNS opera-
tors.
No truncation of DNS response. Despite supporting
EDNS(0), several of our tested forwarder implementations
actively truncate large DNS responses, even when they do
not reach the Ethernet MTU (e.g., truncate all responses at
512 or 1,280 bytes, see Table 2 in Section 5). In such case,
the truncated DNS responses are not fragmented, thus the
defragmentation attack will fail.

No verification of DNS response. The aggregated over-
sized DNS response consists of a CNAME chain, and the
attacker tampers with the last two records. To detect the
rogue records, a possible solution is for the DNS forwarder
to “re-query” the domains and aliases (i.e., *.attacker.com
and victim.com) in the aggregated response (i.e., perform
recursive queries). Alternatively, if the victim domain is
DNSSEC-signed, it can also perform full DNSSEC valida-
tion. However, this defeats the purpose of a forwarder as it
is significantly increasing the amount of workload.
DNS caching by record. From the smallest unit of each
DNS cache entry, we find DNS forwarders cache the answers
either by response as a whole (i.e., the entire response forms
one cache entry) or by record (i.e., each resource record
forms individual cache entries). For example, when the de-
fragmented DNS response in Figure 5(b) is cached by re-
sponse, it only forms one cache entry for a.attacker.com.
As a result, querying victim.com does not hit the cache, so
the spoofed record will not be returned. In contrast, when
it is cached by record, querying any name in the response
(e.g., y.attacker.com and victim.com) will hit the cache.
Because the victim domain is located only in the last record
of the response, the attack requires that the DNS forwarder
cache by record. Caching by record has a performance ad-
vantage as more records will be cached in a single response.

5 Vulnerable DNS Forwarder Software

In this section, we first measure the DNS forwarding behav-
iors of home routers and DNS software, to check whether
they fit our defragmentation attack conditions. We then per-
form actual defragmentation attacks to confirm their vulner-
abilities.

5.1 Home Routers

A number of DNS forwarders have been recognized to run
on residential network devices. In a typical setting, the de-
vices receive DNS requests from clients, and forward them to
upstream recursive resolvers. As a very representative case,
we start from testing the prevalent home routers, which com-
monly support DNS forwarding.

We perform our tests on real home router models that we
purchase from their official online stores. According to a re-
port on the home router market [60], we select models from
leading vendors including TP-Link [21], D-Link [5], NET-
GEAR [15], Huawei [11] and Linksys [4], as well as other
prominent players like Tenda [20], ASUS [23], Gee [9] and
Xiaomi [14]. In total, we perform tests on 16 router models
from different vendors. For each router, we test if it fits all
attack conditions proposed in Section 4.4.
Test results. Table 2 presents the DNS forwarding behav-
iors of home routers. Among 16 router models, we find that 8

Table 2: DNS forwarding behaviors of home routers. The
first eight models are confirmed vulnerable by real attacks.

Brand Model EDNS(0) No Tru-
ncation

Cache by
Record Vulnerable

D-Link DIR 878 3 3 3 3
ASUS RT-AC66U B1 3 3 3 3

Linksys WRT32X 3 3 3 3
Motorola M2 3 3 3 3
Xiaomi 3G 3 3 3 3
GEE Gee 4 Turbo 3 3 3 3

Wavlink A42 3 3 3 3
Volans VE984GW+ 3 3 3 3

Huawei Honor router 2 3 3 7 7
Tenda AC1206 3 3 7 7

FAST FER1200G 3 3 –1 7
TP-Link TL-WDR5660 3 3 – 7
Mercury D128 3 3 – 7

NetGear R6800 7 72 – 7

H3C MSR830-WiNet 7 72 3 7

Cisco RV320 3 73 3 7

1 DNS caching not supported.
2 Truncate at 512 bytes.
3 Truncate at 1280 bytes.

(50%, in the first section of Table 2) satisfy all our attack con-
ditions, which are vulnerable to the defragmentation cache
poisoning attack. 5 models (in the second section of Table 2)
are immune to the attack because they either do not support
DNS caching or do not cache by record. The remaining 3
models (in the third section of Table 2) are not affected by
the attack, because they have problems handling oversized
DNS responses. They either do not support EDNS(0) at all,
or actively truncate the response to a smaller size. As ex-
pected, we do not find any router model that “re-queries” the
names to verify the DNS response.

5.2 DNS Software
DNS forwarding is also implemented by mainstream
DNS software. For instance, it can be enabled by the
forward-zone keyword of Unbound, or the server key-
word of dnsmasq. We test the DNS forwarding behaviors
of seven kinds of mainstream DNS software: BIND [25],
Unbound [27], Knot Resolver [13], PowerDNS [18],
DNRD [6], dnsmasq [7] and MS DNS [8].
Test results. Table 3 presents the DNS forwarding behav-
iors of DNS software. We find that dnsmasq and MS DNS
satisfy all attack conditions, which are vulnerable to the de-
fragmentation cache poisoning attack. Particularly, dnsmasq
is used by embedded systems like OpenWRT [17], so the
attack can affect more router models than our tested ones.
DNRD is not vulnerable because it caches DNS responses as
a whole. Surprisingly, BIND, Unbound, Knot Resolver and
PowerDNS are immune to the attack, because they re-query
the CNAME chain and verify the oversized response, even
when configured as DNS forwarders.

Table 3: DNS forwarding behaviors of DNS software. The
first two are confirmed vulnerable by real attacks.

Software Version EDNS(0) &
No truncation

Cache by
Record

No Veri-
fication Vulnerable

dnsmasq 2.7.9 3 3 3 3
MS DNS 2019 3 3 3 3

BIND 9.9.4 3 3 7 7
Unbound 1.7.2 3 3 7 7
Knot Res 3.2.0 3 3 7 7

PowerDNS 4.1.8 3 3 7 7
DNRD 2.20.3 3 7 3 7

5.3 Confirmation of Attacks

To confirm that the selected software (listed in Tables 2 and
3) is vulnerable to the defragmentation cache poisoning at-
tack, we launch real attacks in controlled environments.
Clean controlled experiment. In a simple case, we build
our testing environment according to the attack model (see
Figure 4). The attacker machine and the DNS forwarder lo-
cate in the same LAN. We configure the DNS forwarder to
use a recursive resolver (for which we use Unbound [27]) as
upstream, which is not open to public. Also, we build the at-
tacker’s authoritative server (which is located outside of the
LAN) and create an oversized DNS response according to
Figure 5. Finally, we confirm that the attack succeeds, if the
rogue record of victim.com (in the spoofed 2nd fragment)
is cached by the DNS forwarder. As a result, all 8 router
models and 2 DNS software are confirmed vulnerable with
this experiment.
Complex network experiment. To confirm that the attack
is feasible in the real world, we also test the attack in a more
complex environment.

Home router. We select a home router which runs on
the latest version of OpenWRT operating system (19.07.1
r10911-c155900f66). As mentioned, OpenWRT by default
uses dnsmasq as its DNS forwarder, thus home routers built
over this system are vulnerable to the attack.

Clients and attacker. To add more background traffic,
we add 13 other clients (e.g., mobile phones, tablets and
laptops) into the LAN of the home router. On the clients
we start tasks such as file downloading, video streaming
and web browsing. On average, the home router receives
7.95Mbps/753.3Kbps of inbound/outbound traffic in a 3-
minute window. The attacker retries each failed or timed-out
DNS query every five seconds.

Upstream recursive resolver. We configure the DNS for-
warder to use Norton ConnectSafe (at 199.85.126.10). Ac-
cording to our measurement results in Table 1, its egress re-
solvers use incremental IPID counters which are exploitable.

Authoritative server. We also create the oversized DNS
response according to Figure 5. To break load balancing of
the resolver, we configure our authoritative server such that

it only responds to queries from one selected egress resolver
address of Norton ConnectSafe (e.g., 156.154.38.*).

In the end, a successful attack in this environment takes 58
seconds to complete. In more detail, the attacker first tries to
probe the current IPID value of the selected egress resolver
(see Figure 4, step 0), which takes 22 seconds and 7 retries.
The attacker then uses sequentially incremented IPID values
in the spoofed 2nd fragments, and start querying the attacker
domain name (see Figure 4, step 2). On the 10th retried DNS
query, the legitimate 1st fragment and the spoofed 2nd frag-
ment are reassembled, and the attack succeeds. Because of
resolver load balancing (i.e., not every DNS query goes to
the selected egress resolver) and possible packet loss, the at-
tack takes longer and requires more retries of DNS queries.

5.4 Responsible Disclosure
We have been reporting the issue to the affected vendors, by
submitting vulnerability reports and contacting via emails.
So far, we have received responses from 3 home router man-
ufacturers (ASUS, D-Link and Linksys). ASUS and D-Link
have released firmware patches to fix the DNS cache poison-
ing vulnerability, where DNS responses are now cached as a
whole (see Section 8 for detailed mitigations). Linksys has
accepted our report via the Bugcrowd [26] platform.

6 Client Population:
A Nationwide Measurement Study

In Section 5, we find several home routers vulnerable to de-
fragmentation attacks. Further, we seek answer to the ques-
tion “how many real-world clients are using the susceptible
devices?” In this section, we elaborate our methodology on
measuring the client population of such devices, and report
our findings.

6.1 Methodology
Unlike our tests on forwarder software, from real clients we
cannot launch defragmentation attacks to check if the devices
are vulnerable due to ethical considerations. While finger-
printing methods like [68] seem straightforward, we find it
difficult to use these methods to reveal the exact model of
the routers.
Measurement overview. Alternatively, we can reach the
same goal by checking whether the conditions (listed in Sec-
tion 4.4) of the attack are satisfied. As such, from a high-
level view, we need to collect real-world clients as our van-
tage points, and check from client side whether the condi-
tions are satisfied by their DNS forwarders.

To perform the measurement study, we collaborate with
our industrial partner who develops network diagnosis soft-
ware for mobile users. They implement our checking meth-
ods in the diagnosis tool, which obtains permission to collect

Figure 6: Oversized response of [uuid].attacker.com

Figure 7: Workflow of client-side measurement

fine-grained DNS data. When run by mobile users, the tool
performs several checks on the attack conditions and sends
the collected data back to the company’s server. The results
are further provided to us for deeper analysis. The software
has active users mostly located in China. Each mobile client
is assigned with a unique ID (termed as uuid).

To perform the measurement, the only component we need
to configure is the authoritative server (i.e., attacker.com).
Figure 6 shows the oversized response we create for
[uuid].attacker.com. A slight difference here is that in
the last A record, the authoritative server generates a nonce
IP address for each query. Using this technique, from a client
we can distinguish whether a DNS response comes from
DNS cache.
Attack condition filters. Following the workflow in Fig-
ure 7, the checking procedure contains the following steps.

Network configurations. To perform checks on home
routers (i.e., through Wi-Fi), the software first check the net-
work environment of each client and remove clients which
use mobile data. It also checks basic network configurations,
such as client IP address and gateway address.

Initial DNS request. To begin with, each client sends an
initial DNS query of [uuid].attacker.com with EDNS(0)
options3, to port 53 of the gateway address. If the

3UDP buffer size=4096

query times out, it suggests that the router does not sup-
port DNS forwarding, and the client is removed from our
data. Otherwise, the software checks if an EDNS(0) OPT
record presents in the response, which suggests EDNS(0)
support (Filter 1). It also checks whether the over-
sized response is truncated by checking the integrity of
the CNAME chain (Filter 2). If the final A record of
[uuid].final.attacker.com is intact, it reports the IP ad-
dress in the record (termed as addr_init). Note that if the
DNS forwarder supports caching, the initial response should
have been written into its DNS cache.

DNS cache check. The client sends queries of
[uuid].final.attacker.com and report the IP addresses
in the responses (termed as addr_cache). If the initial re-
sponse is cached by record, this query should hit the cache,
and therefore addr_init and addr_cache should be the
same (Filter 3). Otherwise, the authoritative server should
be queried again and give another nonce response, thus
addr_init and addr_cache should differ, and we remove
the client from our dataset.

Meanwhile, when addr_init equals addr_cache (i.e.,
response comes from DNS cache), we need to check whether
the response is from the cache of the DNS forwarder or up-
stream recursive resolvers. Traditionally, one can use non-
recursive queries to snoop the DNS cache of recursive re-
solvers [32]. However, we find that this approach is infea-
sible for DNS forwarders, as several router models that we
test forward non-recursive queries to other servers. As such,
we choose to infer the caching position based on timing of
the response. On each client, the software repeats the final
DNS request of [uuid].final.attacker.com for 10 times
(due to traffic limit of the diagnosis tool), and calculates the
average DNS query time of this cached domain. Based on
the average DNS query time, we perform measurements to
select clients that are affected (Filter 4).
Limitations. We acknowledge that using a timing-based ap-
proach is only an estimation of actual affected clients. How-
ever, we find that more accurate methods of cache snoop-
ing (e.g., non-recursive queries) are not applicable for DNS
forwarders. To make the conclusion more reliable, we per-
form an additional analysis on the DNS query time (hitting
a forwarder cache vs. resolver cache), and justify the re-
sults based on real-world measurements. Also, because of
the software coverage, we can only perform measurements
on mobile Wi-Fi users in China. Although we may under-
estimate the actual population of affected clients, we believe
the test results still provide us with an opportunity to under-
stand the impact of the newly discovered attack.
Ethics. The checking method is implemented by our in-
dustrial partner on their network diagnosis tool for mobile
users, which obtains permission to send and collect net-
work traffic. It is important that on each client, the software
does not launch real attacks to DNS forwarders, but only
checks the attack conditions. Regarding implementation, it

only performs ∼10 DNS queries of our controlled domain
name exclusively registered for this study. Upon receiving
the DNS answers, it does not make connections to the server
addresses. Throughout the experiments, no personally iden-
tifiable information (PII) or privacy data is collected. In ad-
dition, the checking tool uses an encrypted channel to send
back collected data to the company’s servers.

6.2 Analysis of Affected Population

In the end, we collect valid measurement results from 20,113
mobile clients. The collected clients cover all 31 provinces
of mainland China (excluding Hong Kong SAR, Macao SAR
and Taiwan), and are distributed in more than 300 (almost
all) cities. Also, our clients cover 127 autonomous systems.

When applying our attack condition filters, 79.3% mobile
clients are removed by Filters 1-3. In detail, 8,211 (40.8%)
clients are using forwarders without EDNS(0) support, 5,695
(28.3%) receive truncated DNS responses, and forwarders
of 2,035 (10.1%) clients do not cache the DNS response by
record.

For the remaining 20.7% (4,172) mobile clients, we check
their average query time of the repeated DNS queries of
[uuid].final.attacker.com (i.e., Filter 4). Note that be-
cause the mobile clients have already passed Filter 3, the re-
peated queries here should all come from the DNS cache, ei-
ther of the DNS forwarder of the upstream resolver. Our goal
is to keep mobile clients which get the responses from DNS
forwarder cache, i.e., exclude mobile clients which obtain re-
sponses from recursive resolver cache. To this end, we take
the opportunity to measure how long it generally takes for a
Wi-Fi client to probe the cache of its upstream recursive re-
solver. Because learning the upstream resolver address needs
manual effort, we choose to perform the measurement using
30 controlled vantage points in China. The vantage points
are all connected to home routers through Wi-Fi (i.e., the
same environment as the large-scale measurement), which
span 11 Chinese provinces and 6 major Chinese ISP net-
works. We learn the upstream resolver addresses manually
from the router configuration pages. On each vantage point,
we send cache-probing queries directly to the upstream re-
solver, and record the average time. Figure 8 shows the CDF
of upstream resolver cache probing time. We term the ratio
of clients which spend more than t ms to get a response from
the cache of the upstream resolver as P(t), which is the op-
posite of the CDF. For instance, from Figure 8, P(10) = 0.7,
P(11) = 0.6. Later, we will use this ground truth distribution
to extrapolate and estimate how many clients in the complete
dataset are hitting the forwarder cache.

For mobile clients that passes Filters 1-3, Figure 9 shows
their average time to retrieve a response from the DNS cache.
For instance, a total of 139 mobile clients spend 10ms to get
a response from DNS cache (either of the DNS forwarder
or the upstream resolver). Here we know P(10) = 0.7 in

Figure 8: CDF of DNS cache probing time of upstream re-
cursive resolver (30 vantage points).

Figure 9: Average DNS query time of a cached domain

the ground truth dataset which we assume will generalize
to the complete dataset. This means that 70% (97) of the
139 clients should require more than 10ms to hit upstream
resolver cache, so their responses can only come from the
DNS forwarder cache (i.e., are vulnerable). Similarly, for the
165 clients which spend 11ms to retrieve a cached response,
because P(11) = 0.6, we estimate that 60% (99) of the 165
clients are vulnerable. Finally, summing up the client num-
bers for each time value (i.e., the yellow bars in Figure 9)
together, we get an estimation of 1,346 vulnerable clients –
6.6% of the total clients measured in the wild). As expected,
when the DNS query time gets longer, it is less likely that the
responses come from DNS forwarder cache.

Summary. Overall, a significant portion of the tested DNS
forwarders (6.6%) is estimated to be vulnerable to our new
defragmentation attack. Different from prior works [33, 48]
which have a different set of attack conditions (e.g., on the
configuration of authoritative servers), our attack conditions
are focused more on the behaviors and configurations of
DNS forwarders (and also partly resolvers). Therefore, we
do not have constraints on which domains can be attacked.
Rather, our constraint is more on which client networks can
be attacked. In addition, we estimate that the vulnerable
DNS forwarders in the wild will rise because our results indi-
cate that the major attack conditions unsatisfied are EDNS(0)
support (40.8%) and correctly handling oversized responses
(28.3%). As the new DNS features are getting promoted and
increasingly supported by vendors, more users will be af-
fected.

7 Reflection on DNS Forwarders

Our attack further demonstrates that DNS forwarders can be
a soft spot in the DNS infrastructure. From our tests in Sec-
tion 5 we have seen different variations of DNS forwarder
implementations. In this section, we further give a discus-
sion on the role of DNS forwarders in the ecosystem. We be-
gin with observations on current implementations, and then
discuss the specifications related to DNS forwarders.

7.1 DNS Forwarder Implementations
A general notion of DNS forwarders is that the devices do
not resolve queries themselves, but pass the queries to an-
other server. They rely on the integrity and logic checks of
the upstream recursive resolvers, and are often not in the po-
sition to verify the DNS responses. For instance, none of
the home routers that we test verifies the CNAME chain in
the response. As a result, vulnerable DNS forwarders are
not able to distinguish the rogue responses, which are tam-
pered with after checked by the upstream resolvers. How-
ever, if a DNS forwarder performs response verification itself
to void the attack (e.g., by “re-querying” or full DNSSEC
validation), it is acting in recursive mode, which could not
be wanted because of performance overhead.

In fact, from the DNS forwarder implementations that we
test in Section 5, we find that the industry does not agree on
the role of DNS forwarders in the ecosystem. They can act
as transparent DNS proxies, or exhibit behaviors of recursive
resolvers. As listed in Table 2 and Table 3, software vendors
could disagree on whether their DNS forwarders should have
caching abilities, whether they should handle fragmented
DNS packets, and whether they should issue queries on their
own (e.g., to verify CNAME chains).

7.2 DNS Forwarder Specifications
After researching RFC documents related to DNS, we find
that the diverse implementations of DNS forwarders can be
caused by the vague definitions in these specifications. In
the very original specification of DNS (i.e., RFC 1034 [58]),
there is no discussion on DNS forwarding, and the ma-
jor components of DNS only include name servers and re-
solvers. As the ecosystem evolves, it now contains multiple
layers of servers, including forwarding devices. While DNS
forwarders are prevalent in current use, there is still a lack
of specific guidelines on their implementation details in the
standard documents.
History: two definitions of “forwarder”. In Table 4 we list
the RFC documents which refer to DNS forwarding. In fact,
we find that the standard documents themselves disagree on
the definition of DNS forwarders, and have different names
for them. Put together, there have been two different descrip-
tions of DNS forwarding devices.

In early specifications, DNS forwarding devices appear to
serve as upstream servers of recursive resolvers. The de-
vices are leveraged to access authoritative servers, and typi-
cally have better Internet connection or bigger caching abil-
ities. The first description of “DNS forwarding” appears in
RFC 2136 [70], which refers to an authoritative zone slave
forwarding UPDATE messages to their master servers. Later,
RFC 2308 [29] gives a definition of “DNS forwarder”, which
implies that forwarders are used to only query authorita-
tive servers. It also says that DNS forwarders are bigger
machines which can share their cached data to downstream
servers. This term is again used in RFC 7626 [32] on DNS
privacy, which suggests that forwarders receive queries from
recursive resolvers.

On the other hand, another definition says that DNS for-
warders locate between clients and recursive resolvers. The
devices take queries from clients, and instead of resolving,
they pass the requests on to another server. Starting from
RFC 3597 [45], the document first describes that forwarders
are used by the client. In RFC 7871 [35], “Forwarding Re-
solvers” use recursive resolvers to handle their queries. For
hosts behind broadband gateways, RFC 5625 [31] provide
guidelines on the implementations of their DNS proxy de-
vices, which are included as “simple DNS forwarders”.

It is not until the very recent specification on DNS termi-
nology (i.e., RFC 8499 [41]) that the definition on DNS for-
warders is clarified. According to their common use, DNS
forwarders “often stand between stub resolvers and recursive
resolvers”. It also defines DNS forwarding as the process
of “sending DNS queries with the RD bit set to 1 to another
server”.

Lacking implementation guidelines. While the term of
DNS forwarders has been updated, the specifications do not
discuss much about the implementation details. That is, the
answer to “what should a DNS forwarder do” is still vague,
such as how they should handle DNS responses, whether
they should have caches, or whether they can perform like
a full-service resolver (e.g., handle referrals and aliases).

The only document we find related to DNS forwarder im-
plementation is RFC 5625 [31], which provides guidelines
to DNS proxies (i.e., a subset of DNS forwarders in one spe-
cific network). It recommends that DNS proxies should be
as transparent as possible, and that they should ensure DNS
packets are forwarded and returned verbatim to their destina-
tions. It is also recommended that DNS proxy devices should
be able to forward UDP packets up to 4,096 octets. As a re-
sult, a consequence is that a DNS proxy cannot distinguish a
spoofed response, if it is tampered with on its way back to the
forwarder. In particular, defragmentation attacks have made
the tampering task simple, since there is not much entropy
for and adversary to guess in the 2nd fragment.

Table 4: DNS forwarder descriptions in RFC documents
RFC No. Title Description

2136 [70]
(Apr 1997)

Dynamic Updates in the
Domain Name System
(DNS UPDATE)

When a zone slave forwards an UPDATE message upward toward the zone’s primary master server,
it must allocate a new ID and prepare to enter the role of “forwarding server”.

2308 [29]
(Mar 1998)

Negative Caching of
DNS Queries (DNS NCACHE)

Forwarder is a nameserver used to resolve queries instead of directly using the authoritative
nameserver chain. The forwarder typically either has better access to the internet, or maintains
a bigger cache which may be shared amongst many resolvers.

3597 [45]
(Sept 2003)

Handling of Unknown DNS
Resource Record (RR) Types ... and in some cases also at caching name servers and forwarders used by the client.

5625 [31]
(Aug 2009)

DNS Proxy
Implementation Guidelines

(DNS) proxies are usually simple DNS forwarders, but typically do not have any caching capabilities.
The proxy serves as a convenient default DNS resolver for clients on the LAN,
but relies on an upstream resolver (e.g., at an ISP) to perform recursive DNS lookups.

7626 [32]
(Aug 2015) DNS Privacy Considerations DNS recursive resolvers sometimes forward requests to other recursive resolvers,

... these forwarders are like resolvers, except that they do not see all of the requests being made.

7871 [35]
(May 2016) Client Subnet in DNS Queries Forwarding Resolvers essentially appear to be Stub Resolvers to whatever Recursive Resolver is

ultimately handling the query, but they look like a Recursive Resolver to their client.

8499 [41]
(Jan 2019) DNS Terminology In current use, however, forwarders often stand between stub resolvers and recursive servers.

8 Attack Model Extension and Mitigation

In this section, we extend our attack model to open DNS
forwarders. Further, we propose mitigation to the new de-
fragmentation attack.

8.1 Extending the Attack Model

In our extended model, we remove the requirement that the
attacker and the DNS forwarder have to be located in the
same LAN. For example, the attack can also be possible for
open DNS forwarders out on the Internet. [62] proposes a
method on how to detect such open forwarders. As we show
in Figure 10, a major difference here is that it is much harder
for the attacker to predict the IPID from the resolver to the
DNS forwarder, unless the resolver uses a globally incre-
menting IPID counter, in which case such open forwarders
will be obviously vulnerable. In the case of hash-based IPID
counter, the recursive resolver is likely going to have two
separate IPID counters for the forwarder and attacker (de-
pending on if there is a hash collision). Therefore, it is diffi-
cult for the attacker to predict the IPID value of the resolver’s
response packets sent to the forwarder.

However, prior defragmentation attacks have proposed
techniques such as meet-in-the-middle [42, 49], which can
still infer the current IPID counter despite that the attacker,
using its own IP address sending probes, would only observe
a different IPID counter (due to the attacker’s IP hashing into
a different counter). A recent technique also suggested that
an attacker who controls multiple IP addresses can proba-
bilistically force a hash collision, in which case the attacker
would still succeed. We believe such attacks are promising
and would affect many more users. Due to reasons such as

Figure 10: Defragmentation cache poisoning attack targeting
open DNS forwarders

ethics, we leave it as future work to validate such attacks in
practice.

8.2 Mitigation
Recall that in Section 4.4, we list several conditions of a vul-
nerable DNS forwarder implementation. Intuitively, break-
ing any of the conditions will void the attack. However, mea-
sures like removing DNS cache or EDNS(0) support are not
advised as they are compromising new and important func-
tionalities.
Response verification. The first solution is for the DNS for-
warder to verify the oversized DNS response. In detail, it
can re-query all names and aliases in the CNAME chain, or
perform full DNSSEC validation. For example, in our DNS
software test (see Table 3), we find that BIND and other 3
kinds of software adopt the “re-query” approach. As a re-
sult, the rogue records should not pass verification, and the

attack fails. However, this approach requires that the DNS
forwarder should be able to perform recursive queries, which
could not be wanted in certain use cases. Meanwhile, it
brings significant performance overhead, which contradicts
with the purpose of DNS forwarders, and might not be feasi-
ble for devices with limited resources (e.g., home routers).

DNS caching by response. An ad hoc approach to void
the defragmentation attack is to change how forwarders
cache the responses. As discussed in Section 4.4, vulner-
able devices cache DNS responses by individual records.
By caching them as a whole, the rogue records in the last
part of the response (see Figure 5(b)) will not hit the cache.
The approach is practical, as it only requires changes on the
forwarder itself. From the disclosure responses (see Sec-
tion 5.4), the updated firmware of ASUS router adopts this
defence. We recommend this solution as a short-term coun-
termeasure. However, due to the uncertainty of the role
of forwarders, it is unclear what their expected behaviors
should be (as RFCs do not specify this), and whether caching
by responses will hurt performance.

0x20 encoding on DNS records. Similar to previous de-
fences of DNS cache poisoning, the essence of this mitiga-
tion is to increase randomness of the response (specifically,
the 2nd fragment). As the 2nd fragment lacks DNS and UDP
metadata, its entropy can be increased by encoding the DNS
records, using an upgraded version of 0x20 encoding [36].
While the original 0x20 encoding only mixes cases of query
names in the question section, here we need recursive re-
solvers to encode names and aliases in all records of the an-
swer section oversized response. To go along with this, the
DNS forwarder should also check the cases of each record
when receiving a DNS response. The downside of this mit-
igation is that it needs changes from upstream recursive re-
solvers, thus cannot be deployed shortly.

Randomizing IPID values. Random IPID values makes any
defragmentation-based attacks (including ours) much more
difficult, as they require the prediction of future IPID val-
ues. Interestingly, as we have tested and described earlier
in Section 4.3, major operating systems such as Windows
and Linux do not exhibit such a random IPID behavior. Yet
in our measurement, we do find Google and Versign’s re-
solvers appear to have such behaviors. We suspect that it
is either because they have used uncommon/customized op-
erating systems and network middleboxes (that rewrite the
IPIDs), or that there are actually still multiple hosts sitting
behind the same egress IP address (e.g., through NAT). In
any event, random IPID values are not impossible to guess,
especially given that the attacker can place 64 guessed values
(out of 64K possible values). Furthermore, if the attack is re-
peated multiple times, the likelihood of success will increase
as well. As a result, it is not a bullet-proof mitigation.

9 Other Related Work

Security risks of DNS forwarders. As mentioned earlier,
a DNS forwarder does not perform recursive DNS lookup
themselves, but simply forwards DNS requests to an up-
stream resolver. In order to mitigate the security risks of
DNS cache poisoning and denial of service attacks, DNS for-
warders are widely implemented in network products related
with DNS protocol, such as home routers, as it not directly
exposed to Internet attackers [49]. It is also recommended
by some DNS experts, e.g., Kaminsky [24].

Unfortunately, many DNS forwarders themselves are not
patched and are vulnerable to DNS cache poisoning at-
tacks [49]. In some cases, DNS forwarders fail to validate
the DNS responses, such as the DNS transaction ID, source
IP address and the destination port number. A measure-
ment study shows that at least 8.6% open DNS resolvers
in the wild are vulnerable to the DNS cache poisoning at-
tacks [63]. Therefore, in spite of the availability of DNSSEC,
DNS record injection vulnerabilities are still fairly common
among DNS forwarders until now.

Compared to previous works, in this paper we further
present a type of cache poisoning attack targeting DNS for-
warders. The methods can circumvent traditional defences
against cache poisoning attacks. Combined with previous
attacks, our work further demonstrates that DNS forwarders
can be a soft spot in the infrastructure.

10 Conclusion

As the DNS infrastructure has evolved dramatically, today
it involves multiple layers of servers. DNS forwarders are
widely-deployed devices, however we show that they can be
a soft spot that is more vulnerable to cache poisoning attacks.
Using fragmented DNS packets and oversized response, an
attacker can inject rogue DNS records of arbitrary domain
names into the forwarders’ cache, and bypass common de-
fences including randomized ephemeral ports and 0x20 en-
coding. By testing on current implementations, we find sev-
eral home router models and DNS software vulnerable to this
attack, including those of large vendors. Meanwhile, through
a nationwide measurement study, we assess the affected pop-
ulation of mobile clients using the vulnerable devices. From
the implementations we find a diversity in the industry on un-
derstanding the role of DNS forwarders. Also, there is still a
lack of implementation guidelines on forwarding devices in
the DNS specifications. As such, we believe more attention
should be raised from the community to the understanding
and the security status of DNS forwarders.

Acknowledgements

We sincerely thank all anonymous reviewers for their valu-
able comments to improve the paper. We also thank the
GeekPwn Cyber Security Competition.

This work is supported by National Key R&D Program
of China, Grant No. 2017YFB0803202; NSFC Grant No.
U1836213, U1636204; State Key Laboratory of Computer
Architecture (ICT, CAS) under Grant No. CARCH201703;
National Science Foundation under Grant No. 1652954,
1646641 and 1619391.

References

[1] Cloud delivered enterprise security by opendns.
https://www.opendns.com/.

[2] Cloudflare Resolver. https://cloudflare-dns.
com/.

[3] Comodo secure dns. https://www.comodo.com/
secure-dns/.

[4] Create your perfect wifi system - linksys. https://
www.linksys.com/us/.

[5] D-link: Consumer. https://www.dlink.com/en/
consumer.

[6] Dnrd, domain name relay daemon. http://dnrd.
sourceforge.net/.

[7] Dnsmasq - network services for small networks. http:
//www.thekelleys.org.uk/dnsmasq/doc.html.

[8] Domain name system (dns) overview. https:
//docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-
2012-r2-and-2012/hh831667(v=ws.11).

[9] Gee hiwifi. https://www.hiwifi.com/.

[10] Google Public DNS. https://developers.google.
com/speed/public-dns/.

[11] Huawei wireless routers-huawei official site. https:
//consumer.huawei.com/eg-en/support/smart-
home/wireless-routers/.

[12] Introducing a new whoami tool for dns resolver infor-
mation. https://developer.akamai.com/blog/
2018/05/10/introducing-new-whoami-tool-
dns-resolver-information.

[13] Knot DNS. https://www.knot-dns.cz/.

[14] Mi router 3 - mi.com. https://www.mi.com/mea/
mi-router-3/.

[15] Netgear, howpublished = https://www.netgear.
com/.

[16] Norton connectsafe. https://www.publicdns.xyz/
public/norton-connectsafe.html.

[17] Openwrt project. https://openwrt.org/.

[18] Powerdns. https://www.powerdns.com/.

[19] Quad9 DNS: Internet Security & Privacy In a Few Easy
Steps. https://www.quad9.net/.

[20] Tenda wireless router. http://simulator.tendacn.
com/N301v2/.

[21] Tp-link: Wifi networking equipment for home & busi-
ness. https://www.tp-link.com/us/.

[22] Verisign public dns offers dns stability and security.
https://www.verisign.com/en_US/security-
services/public-dns/index.xhtml.

[23] Wireless routers | networking | asus global.
https://www.asus.com/Networking/Wireless-
Routers-Products/.

[24] Dan kaminsky’s blog. http://dankaminsky.com/
2008/07/21/130/, 2008.

[25] Bind 9 - versatile, classic, complete name server soft-
ware. https://www.isc.org/bind/, 2019.

[26] Bugcrowd. https://www.bugcrowd.com/, 2019.

[27] Nlnet labs - unbound. https://nlnetlabs.nl/
projects/unbound/about/, 2019.

[28] Geoffrey Alexander, Antonio M Espinoza, and Je-
didiah R Crandall. Detecting tcp/ip connections via
ipid hash collisions. Proceedings on Privacy Enhanc-
ing Technologies, 2019(4):311–328, 2019.

[29] Mark Andrews. Negative caching of dns queries (dns
ncache). 1998.

[30] R Arends, R Austein, M Larson, Daniel Massey, and
Scott W Rose. Protocol modifications for the dns secu-
rity extensions rfc 4035. Technical report, 2005.

[31] Ray Bellis. Dns proxy implementation guidelines.
2009.

[32] Stephane Bortzmeyer. Dns privacy considerations.
2015.

[33] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shul-
man, and Michael Waidner. Domain validation++ for
mitm-resilient pki. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 2060–2076. ACM, 2018.

https://www.opendns.com/
https://cloudflare-dns.com/
https://cloudflare-dns.com/
https://www.comodo.com/secure-dns/
https://www.comodo.com/secure-dns/
https://www.linksys.com/us/
https://www.linksys.com/us/
https://www.dlink.com/en/consumer
https://www.dlink.com/en/consumer
http://dnrd.sourceforge.net/
http://dnrd.sourceforge.net/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831667(v=ws.11)
https://www.hiwifi.com/
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://consumer.huawei.com/eg-en/support/smart-home/wireless-routers/
https://consumer.huawei.com/eg-en/support/smart-home/wireless-routers/
https://consumer.huawei.com/eg-en/support/smart-home/wireless-routers/
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information
https://developer.akamai.com/blog/2018/05/10/introducing-new-whoami-tool-dns-resolver-information
https://www.knot-dns.cz/
https://www.mi.com/mea/mi-router-3/
https://www.mi.com/mea/mi-router-3/
https://www.netgear.com/
https://www.netgear.com/
https://www.publicdns.xyz/public/norton-connectsafe.html
https://www.publicdns.xyz/public/norton-connectsafe.html
https://openwrt.org/
https://www.powerdns.com/
https://www.quad9.net/
http://simulator.tendacn.com/N301v2/
http://simulator.tendacn.com/N301v2/
https://www.tp-link.com/us/
https://www.verisign.com/en_US/security-services/public-dns/index.xhtml
https://www.verisign.com/en_US/security-services/public-dns/index.xhtml
https://www.asus.com/Networking/Wireless-Routers-Products/
https://www.asus.com/Networking/Wireless-Routers-Products/
http://dankaminsky.com/2008/07/21/130/
http://dankaminsky.com/2008/07/21/130/
https://www.isc.org/bind/
https://www.bugcrowd.com/
https://nlnetlabs.nl/projects/unbound/about/
https://nlnetlabs.nl/projects/unbound/about/

[34] Taejoong Chung, Roland van Rijswijk-Deij, Balakr-
ishnan Chandrasekaran, David Choffnes, Dave Levin,
Bruce M Maggs, Alan Mislove, and Christo Wilson.
A longitudinal, end-to-end view of the {DNSSEC}
ecosystem. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pages 1307–1322, 2017.

[35] Carlo Contavalli, Wilmer van der Gaast, David C
Lawrence, and Warren Kumari. Rfc 7871-client sub-
net in dns queries. 2016.

[36] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya
Jinmei, and Wenke Lee. Increased dns forgery re-
sistance through 0x20-bit encoding: security via leet
queries. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 211–
222. ACM, 2008.

[37] Joao Damas, Michael Graff, and Paul Vixie. Extension
mechanisms for dns (edns (0)). 2013.

[38] Zakir Durumeric, David Adrian, Ariana Mirian,
Michael Bailey, and J. Alex Halderman. A search en-
gine backed by Internet-wide scanning. In 22nd ACM
Conference on Computer and Communications Secu-
rity, October 2015.

[39] R Elz and R Bush. Rfc 2181: Clarifications to the dns
specification. Technical report, Updates RFC 1034,
RFC 1035, RFC 1123. Status: Proposed standard,
1997.

[40] Kazunori Fujiwara. Measures against dns
cache poisoning attacks using ip fragmentation.
https://indico.dns-oarc.net/event/31/
contributions/692/attachments/660/1115/
fujiwara-5.pdf.

[41] Kazunori Fujiwara, Andrew Sullivan, and Paul Hoff-
man. Dns terminology. 2019.

[42] Yossi Gilad and Amir Herzberg. Fragmentation con-
sidered vulnerable: blindly intercepting and discarding
fragments. In Proceedings of the 5th USENIX confer-
ence on Offensive technologies, pages 2–2. USENIX
Association, 2011.

[43] Yossi Gilad, Amir Herzberg, and Haya Shulman. Off-
path hacking: The illusion of challenge-response au-
thentication. IEEE Security & Privacy, 12(5):68–77,
2013.

[44] Fernando Gont. Rfc 7739-security implications of pre-
dictable fragment identification values. 2016.

[45] Andreas Gustafsson. Handling of unknown dns re-
source record (rr) types. 2003.

[46] John W Heffner, Ben Chandler, and Matt Mathis. Ipv4
reassembly errors at high data rates. 2007.

[47] Amir Herzberg and Haya Shulman. Security of patched
dns. In European Symposium on Research in Computer
Security, pages 271–288. Springer, 2012.

[48] Amir Herzberg and Haya Shulman. Fragmentation
considered poisonous, or: One-domain-to-rule-them-
all. org. In 2013 IEEE Conference on Communications
and Network Security (CNS), pages 224–232. IEEE,
2013.

[49] Amir Herzberg and Haya Shulman. Vulnerable delega-
tion of dns resolution. In European Symposium on Re-
search in Computer Security, pages 219–236. Springer,
2013.

[50] Paul Hoffman, Andrew Sullivan, and K Fujiwara. Dns
terminology. Technical report, 2019.

[51] Charles Hornig. A standard for the transmission of ip
datagrams over ethernet networks. Technical report,
1984.

[52] A Hubert and R Van Mook. Measures for making dns
more resilient against forged answers. Technical report,
RFC 5452, January, 2009.

[53] Dan Kaminsky. The massive, multi-vendor issue and
the massive, multi-vendor fix. Technical report, 2008.

[54] Christopher A Kent and Jeffrey C Mogul. Fragmenta-
tion considered harmful, volume 17. 1987.

[55] Amit Klein and Benny Pinkas. From IP ID to device ID
and KASLR bypass. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 1063–1080, Santa
Clara, CA, August 2019. USENIX Association.

[56] Jeffrey Knockel and Jedidiah R Crandall. Counting
packets sent between arbitrary internet hosts. In 4th
{USENIX} Workshop on Free and Open Communica-
tions on the Internet ({FOCI} 14), 2014.

[57] Marc Kührer, Thomas Hupperich, Jonas Bushart,
Christian Rossow, and Thorsten Holz. Going wild:
Large-scale classification of open dns resolvers. In
Proceedings of the 2015 Internet Measurement Confer-
ence, pages 355–368. ACM, 2015.

[58] Paul Mockapetris. Rfc-1034 domain names-concepts
and facilities. Network Working Group, page 55, 1987.

[59] Jeffrey C Mogul and Steven E Deering. Path mtu dis-
covery. Technical report, 1990.

https://indico.dns-oarc.net/event/31/contributions/692/attachments/660/1115/fujiwara-5.pdf
https://indico.dns-oarc.net/event/31/contributions/692/attachments/660/1115/fujiwara-5.pdf
https://indico.dns-oarc.net/event/31/contributions/692/attachments/660/1115/fujiwara-5.pdf

[60] VC NewsNetwork. Wifi home router market
2019 global analysis, opportunities and forecast to
2025. https://www.reuters.com/brandfeatures/
venture-capital/article?id=105961, 2019.

[61] Vicky Risk. Edns (in) compatibility. https://www.
isc.org/docs/DNS-OARC-EDNS-Compliance.pdf,
2015.

[62] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. On measuring the client-side dns in-
frastructure. In Proceedings of the 2013 conference on
Internet measurement conference, pages 77–90. ACM,
2013.

[63] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. Assessing dns vulnerability to record in-
jection. In Proceedings of the Passive and Active Mea-
surement Conference, 2014.

[64] Kyle Schomp, Tom Callahan, Michael Rabinovich, and
Mark Allman. Dns record injectino vulnerabilities
in home routers. http://www.icir.org/mallman/
talks/schomp-dns-security-nanog61.pdf, 2014.

[65] Christoph Schuba. Addressing weaknesses in the do-
main name system protocol. Master’s thesis, Purdue
University, West Lafayette, IN, 1993.

[66] Haya Shulman and Michael Waidner. Fragmentation
considered leaking: port inference for dns poisoning.
In International Conference on Applied Cryptography
and Network Security, pages 531–548. Springer, 2014.

[67] Joe Stewart. Dns cache poisoning–the next generation,
2003.

[68] Yves Vanaubel, Jean-Jacques Pansiot, Pascal Mérindol,
and Benoit Donnet. Network fingerprinting: Ttl-based
router signatures. In Proceedings of the 2013 confer-
ence on Internet measurement conference, pages 369–
376. ACM, 2013.

[69] Paul Vixie. Dns and bind security issues. In Usenix
Security Symposium, 1995.

[70] Paul Vixie, S Thomson, Y Rekhter, and J Bound. Rfc
2136: Dynamic updates in the domain name system
(dns update), 1997.

[71] Xu Zhang, Jeffrey Knockel, and Jedidiah R Crandall.
Onis: Inferring tcp/ip-based trust relationships com-
pletely off-path. In IEEE INFOCOM 2018-IEEE Con-
ference on Computer Communications, pages 2069–
2077. IEEE, 2018.

Figure 11: Headers in a DNS packet

Appendices

A IP Fragmentation

IP fragmentation allows IP datagrams to be transmitted
through networks which limit packets to a small size. On
an arbitrary internet path, Path Maximum Transmission Unit
(PMTU) defines the size limit of IP packets, and datagrams
larger than PMTU will be fragmented. PMTU equals the
minimum MTU of each hop in the path, and can be discov-
ered using a technique described in [59]. Particularly, the
MTU of Ethernet is 1,500 bytes [51].

As shown in Figure 11, IP fragmentation and reassembly
is supported by using several fields of the IP header: Iden-
tification (IPID), Don’t Fragment bit (DF), More Fragment
bit (MF) and Fragment Offset. If a sender does not desire a
datagram to be fragmented, the DF flag is set. The MF flag in-
dicates whether this is the last fragment of the datagram, and
is cleared in the last fragment. Fragment Offset shows the
position of current fragment in the original datagram. Most
importantly, fragments of one IP datagram have the same
IPID, in order to be correctly reassembled.

Specifically for DNS packets, they contain IP header, UDP
header and DNS header. If a DNS packet is fragmented, only
the first fragment will have UDP header and DNS header.
Fragmentation considered “harmful”. Despite being one
of the IP basic functions, there has been long discussions
on the problems caused by IP fragmentation. The earliest
report on the issue dates back to 1987 [54], which shows
that fragmentation can lead to poor performance and com-
plete communication failure. As documented by [46], IP
fragmentation can also result in frequent data corruption.
In recent studies, IP fragmentation can be used to circum-
vent DNS cache injection defences [43, 48], or cause CAs
to issue fraudulent certificates [33]. Because of the security
issues, there have been discussions on completely avoiding
fragmentation behaviors [40].

B IPID Assignment of Public DNS Services

Using the technique described in Section 4, we test the IPID
assignment of egress resolvers of 7 public DNS services. We

https://www.reuters.com/brandfeatures/venture-capital/article?id=105961
https://www.reuters.com/brandfeatures/venture-capital/article?id=105961
https://www.isc.org/docs/DNS-OARC-EDNS-Compliance.pdf
https://www.isc.org/docs/DNS-OARC-EDNS-Compliance.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf

Figure 12: IPID assignment of a) Cloudflare DNS, b) Quad9
DNS, c) OpenDNS, and d) Comodo Secure DNS, observed
from one vantage point. Each line represents one egress re-
solver, and each dot marks one DNS response packet.

use two vantage points as DNS clients, and start the mea-
surement on both machines at the same time. We change the
speed of DNS queries every 100 seconds (from 1Qps, 10Qps
to 100Qps).
Hash-based IPID counters. We find that egress resolvers
of Cloudflare, Quad9, OpenDNS, Comodo and Norton use
hash-based IPID counters. Figure 12 shows the IPIDs of
DNS responses received by one DNS client. After separat-
ing responses from different egress resolvers (i.e., lines in
Figure 12), we find that the egress resolvers use predictable

Figure 13: IPID assignment of Norton ConnectSafe
DNS for fragmented DNS responses (egress resolver:
156.154.180.*).

Figure 14: IPID assignment of Google Public DNS (egress
resolver: 172.253.0.*).

incremental IPID counters. The increments are linear with
time, because in hash-based algorithms each IPID counter
is shared by an array of destination addresses. We confirm
that the algorithm is hash-based, because the IPIDs of DNS
reponses sent to our two vantage points are not related.

Particularly, as shown in Figure 13, Norton Connect-
Safe uses hash-based IPID counters for fragmented DNS re-
sponses only, and uses zero IPID values when they are not
fragmented. This design has made IPID prediction easier, as
most DNS packets on the Internet are not fragmented, so the
IPID counters are hardly increased by normal responses.
Random IPID assignment. As shown in Figure 14, egress
resolvers of Google and Verisign use random IPID assign-
ment. As upstream resolvers, the two services cannot be ex-
ploited in the attack.

	Introduction
	Prior DNS Cache Poisoning Attacks Targeting Recursive Resolvers
	Forging Attacks
	Defragmentation Attacks

	DNS Forwarder
	Defragmentation Attacks Targeting DNS Forwarders
	Attack Overview
	Forcing DNS Response Fragmentation
	Crafting Spoofed Fragments
	Conditions of Successful Attacks

	Vulnerable DNS Forwarder Software
	Home Routers
	DNS Software
	Confirmation of Attacks
	Responsible Disclosure

	Client Population: A Nationwide Measurement Study
	Methodology
	Analysis of Affected Population

	Reflection on DNS Forwarders
	DNS Forwarder Implementations
	DNS Forwarder Specifications

	Attack Model Extension and Mitigation
	Extending the Attack Model
	Mitigation

	Other Related Work
	Conclusion
	IP Fragmentation
	IPID Assignment of Public DNS Services

